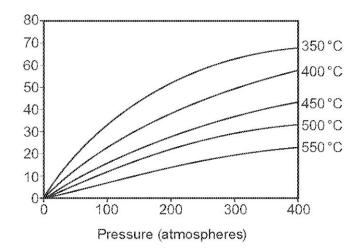

WJEC Chemistry GCSE

11: Production, Use and Disposal of Important Chemicals and Materials

Practice Questions

England Specification


1. Ammonia is produced during the Haber process. The reaction is summarised in the diagram below.

- (a) Give the name of gas A. [1]
- (b) Name catalyst B and state why it is used. [2]
- (c) The yield of ammonia is only 28% therefore 72% of the gases remain unreacted.Describe what happens to these unreacted gases and state why this is important. [2]

(d) The following graph shows the effect of temperature and pressure on the yield of ammonia during the Haber process.

Percentage (%) yield of ammonia

Describe how the yield of ammonia varies with temperature and pressure.	[2]
Temperature	

Pressure	
(e) Write a balanced symbol equation for the production of ammonia.	[3]
+	

Ammonia is manufactured from nitrogen and hydrogen using the Haber process.	1	Ammonia	is	manufact	ured from	n nitroger	and h	vdrogen	using the	Haber p	rocess.
---	---	---------	----	----------	-----------	------------	-------	---------	-----------	---------	---------

(a) The equation below shows the formation of ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(i)	State the numbers of nitrogen atoms and hydrogen atoms on the left hand s	ide of
	the equation. Use these numbers to show that the equation is balanced.	[2]

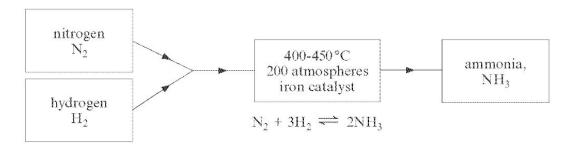
Number of nitrogen atoms	Number of hydrogen atoms

(ii)	Give the meaning of (g)	in the equation.	[1]
------	-------------------------	------------------	-----

(b) The box below shows some of the conditions and terms used when describing the Haber process.

ammonia	hydrogen	450°C	iron	cooling
nitrogen	reversible	200 atmosp	heres	recycling

	(i)	Choose	from	the	bo
--	-----	--------	------	-----	----


l.	the process used to remove the product from the reaction mixture,	[1]
11.	the method used to reduce the waste of reactants.	[1]

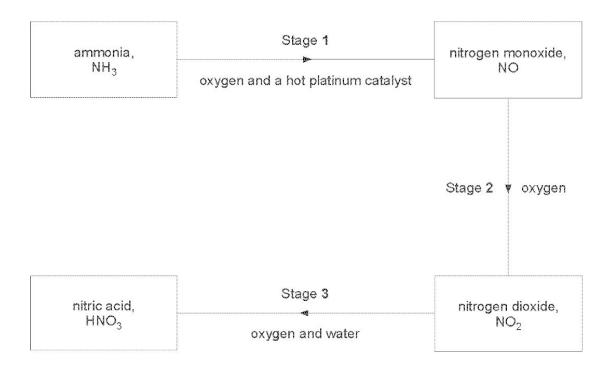
(ii)	Choose	from	the	box	the	catalyst	used	in	the	reaction.	State	the	purpose	of	a
	catalyst.												• • • • • • • • • • • • • • • • • • • •	[2	2]

Catalyst	

Purpose

The diagram and equation below outline the manufacture of ammonia by the Haber process.

Explain the choice of temperature and pressure used in the process and why it is necessar use a catalyst. [6 Q]	ry to WC]
	•••••••
	•••••


(a) Ammonia is made industrially from nitrogen and hydrogen by the Haber process.

The table below shows the yield of ammonia under different pressure and temperature conditions.

	Temperature (°C)							
Pressure (atmospheres)	100	200	300	400	500			
		Yiel	d of ammonia	(%)				
10	88.2	50.7	14.7	3.9	1.2			
50	94.5	75.0	39.5	15.3	5.6			
100	96.7	81.7	52.5	25.2	10.6			
200	98.4	89.0	66.7	40.0	18.3			
400	99.4	94.6	79.7	55.4	31.9			
1000	99.9	98.3	92.6	79.8	57.5			

(i)	Using only the data in the table suggest the the process.	The property of the control of the c	or 1]
	Pressure atmospheres	Temperature°C	
(ii)	Give the disadvantage of using a low tempera problem is overcome.	•	nis 2]
(iii)	The actual pressure used in the process is issues, suggest a disadvantage of using a hig		ty 1]

(b) Ammonia is used to form nitric acid in a three-stage reaction.

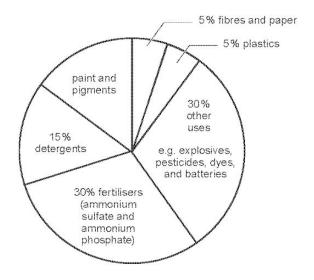
- (i) Once the reaction in stage 1 has started there is sufficient heat to maintain the reaction. Give the term used to describe a reaction that produces heat. [1]
- (ii) Balance the symbol equation below that represents the reaction taking place in stage 3. [1]

(iii) Write a balanced symbol equation for the reaction that occurs when nitric acid is added to copper(II) carbonate. [2]

Describe the benefits of the use of nitrogenous fertilisers and the problems that arise when they are washed into rivers. [6 QWC]

The reaction between hydrogen and chlorine to give hydrogen chloride can be represented by the following equation.

The relative amounts of energy needed to break the bonds shown are given in the table below.


Bond	Amount of energy needed to break the bond (kJ)
Н—Н	436
Cl—Cl	242
H—Cl	431

NOTE: The amount of energy released in making a bond is equal and opposite to that needed to break the bond.

(a)	Usin	ng the bond energy values in the table, calculate	
	(i)	the relative energy needed to break all the bonds in the reactants,	[2]
	(ii)	the relative energy given out when all the bonds in the product are formed.	[2]
(b)		ing your answers to part (a) , state whether the reaction between hydrogen and chlo othermic or endothermic and give a reason for your answer.	rine [1]

7.	(a)		ric acid is produced by the contact process. The main stages in the process in below.	are
		Stag	e 1: Burning sulfur in air to produce gas A	
		Stag	e 2: Passing gas A over a catalyst at 450 °C to produce gas B	
		Stag	e 3: Dissolving gas B in concentrated sulfuric acid to produce oleum	
		Stag	e 4: Diluting oleum to produce sulfuric acid	
		(i)	Give the names of gases A and B.	[2]
			Gas A	
			Gas B	
		(ii)	Which stage involves a reversible reaction?	[1]
		(iii)	Give a reason why gas B is not dissolved directly in water during stage 3.	[1]
		8012494413		

(b) The following pie chart shows the uses of sulfuric acid.

(i) Calculate the percentage of sulfuric acid used for making paint and pigments. [2]

Percentage used for making paint and pigments = %

(ii) One important use of sulfuric acid is in the production of fertilisers. Complete the following word equation for the production of ammonium sulfate. [1]

sulfuric acid + ____ ammonium sulfate

(iii) This type of fertiliser can be washed into rivers. Explain why this is a cause for concern. [3]

		Observation	
	rel	ights a glowing splint	
ide		turns flame red	
	tu	ırns limewater milky	
	рор	s with a burning splint	
	turn	s damp red litmus blue	
	yellow flame	green flame	
ipitate	white precipitate	green precipitate	
Choose from the box the result you would expect for the following tests.		[3]	
A flame test is carried out on a sample of sodium chloride			
ried out on a	sample of copper(II) sulfa	te	
	me ipitate ox the result	turn contains observations made when to the contains observations made when the contains observations made when the contains observations made when the contains observations are contained to the contained to t	turns limewater milky pops with a burning splint turns damp red litmus blue contains observations made when testing for some common me yellow flame green flame ipitate brown precipitate green precipitate white precipitate ox the result you would expect for the following tests.

Many metal ores contain sulfides. Chalcocite is an important copper ore which contains copper(I) sulfide, Cu₂S.

Copper can be obtained from the ore by heating in air.

The equation for the reaction that takes place is as follows.

(a) Use the above equation to calculate the mass of copper produced on reacting 20.5 tonnes of copper(I) sulfide with an excess of oxygen. [3]

$$A_{r}(Cu) = 64$$
 $A_{r}(S) = 32$

Mass of copper = _____tonnes

(b) When the extraction was carried out with 20.5 tonnes of chalcocite only 12.3 tonnes of copper was formed.

Calculate the percentage of impurity present in the ore. [2]

Percentage of impurity = %